Breakthrough may help treat degenerative disease

Hebrew U. researchers identify mechanism to transform embryonic stem cell into any human cell.

July 19, 2012 06:33
2 minute read.
Dr. Eran Meshorer (right)

Stem cell researchers 370. (photo credit: Courtesy Hebrew University)


Dear Reader,
As you can imagine, more people are reading The Jerusalem Post than ever before. Nevertheless, traditional business models are no longer sustainable and high-quality publications, like ours, are being forced to look for new ways to keep going. Unlike many other news organizations, we have not put up a paywall. We want to keep our journalism open and accessible and be able to keep providing you with news and analyses from the frontlines of Israel, the Middle East and the Jewish World.

As one of our loyal readers, we ask you to be our partner.

For $5 a month you will receive access to the following:

  • A user uxperience almost completely free of ads
  • Access to our Premium Section and our monthly magazine to learn Hebrew, Ivrit
  • Content from the award-winning Jerusalem Repor
  • A brand new ePaper featuring the daily newspaper as it appears in print in Israel

Help us grow and continue telling Israel’s story to the world.

Thank you,

Ronit Hasin-Hochman, CEO, Jerusalem Post Group
Yaakov Katz, Editor-in-Chief

UPGRADE YOUR JPOST EXPERIENCE FOR 5$ PER MONTH Show me later Don't show it again

The most amazing property of embryonic stem cells is their capability of renewing themselves an infinite number of times and differentiating into every type of mature cell in the body – meaning they have the potential of serving as the “factory” for producing healthy tissues to replace sick ones. But until now, scientists did not know the secret behind this pluripotency, which if revealed could eventually lead to their use to implant healthy new cells into humans suffering from degenerative diseases – from Parkinson’s and Alzheimer’s disease to diabetes.

Doctoral student Shai Melcer and colleagues in the lab of Hebrew University geneticist Dr. Eran Meshorer have just published their research in the prestigious journal Nature Communications, reporting how they identified the processes that turn human embryonic stem cells into any type of body cell.

Be the first to know - Join our Facebook page.

The article titled “Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation” discusses how the team combined molecular, microscopic and genomic approaches and focused on epigenetic pathways, which cause biological changes without a corresponding change in the DNA sequence and are specific to embryonic stem cells.

The molecular basis for epigenetic mechanisms is chromatin, the combination of DNA and proteins that make up the contents of the nucleus of a cell.

Chromatin’s main functions are to package DNA into a smaller volume to fit in the cell, strengthen the DNA to allow cell division and prevent harm to the DNA, and control gene expression and DNA replication. The primary protein components of chromatin are histones that compact the DNA.

In what is described by Hebrew University as “groundbreaking research,” Melcer studied the mechanisms that support an “open” chromatin conformation in embryonic stem cells. The team found that chromatin is less condensed in embryonic stem cells, allowing them the flexibility or “functional plasticity” to turn into any kind of cell.

A distinct pattern of chemical modifications of chromatin structural proteins (referred to as the acetylation and methylation of histones) enables a looser chromatin configuration in embryonic stem cells. During the early stages of differentiation, this pattern changes to facilitate chromatin compaction.

They also found that a nuclear lamina protein called lamin A is part of the secret.

In all differentiated cell types, lamin A binds compacted domains of chromatin and anchors them to the cell’s nuclear envelope. Lamin A is absent from embryonic stem cells and this may enable the freer, more dynamic chromatin state in the cell nucleus. The authors believe that chromatin plasticity is tantamount to functional plasticity, since chromatin is made up of DNA that includes all genes and codes for all proteins in any living cell. Understanding the mechanisms that regulate chromatin function will in the future enable intelligent manipulations of embryonic stem cells.

“If we can apply this new understanding about the mechanisms that give embryonic stem cells their plasticity, then we can increase or decrease the dynamics of the proteins that bind DNA and thereby increase or decrease the cells’ differentiation potential,” concluded Meshorer.

Related Content

August 31, 2014
Weizmann scientists bring nature back to artificially selected lab mice