Theory: Saturn moon's heat from decay

By
March 13, 2007 01:36
1 minute read.

 
X

Dear Reader,
As you can imagine, more people are reading The Jerusalem Post than ever before. Nevertheless, traditional business models are no longer sustainable and high-quality publications, like ours, are being forced to look for new ways to keep going. Unlike many other news organizations, we have not put up a paywall. We want to keep our journalism open and accessible and be able to keep providing you with news and analyses from the frontlines of Israel, the Middle East and the Jewish World.

As one of our loyal readers, we ask you to be our partner.

For $5 a month you will receive access to the following:

  • A user uxperience almost completely free of ads
  • Access to our Premium Section and our monthly magazine to learn Hebrew, Ivrit
  • Content from the award-winning Jerusalem Repor
  • A brand new ePaper featuring the daily newspaper as it appears in print in Israel

Help us grow and continue telling Israel’s story to the world.

Thank you,

Ronit Hasin-Hochman, CEO, Jerusalem Post Group
Yaakov Katz, Editor-in-Chief

UPGRADE YOUR JPOST EXPERIENCE FOR 5$ PER MONTH Show me later Don't show it again

Scientists believe heat from radioactive decay inside a tiny, icy Saturn moon shortly after it formed billions of years ago may explain why geysers are erupting from the surface today. The Cassini spacecraft last year beamed back dazzling images of Yellowstone-like geysers spewing from a warm section on Enceladus, raising the possibility that the moon, which has an overall surface temperature of about minus-330 degrees, may have an internal environment suitable for primitive life. However, scientists have been stumped by the origin of Enceladus' interior heat. Now a new model suggests ancient radioactive decay played a key role in shaping the moon's warm south pole region, where plumes of water vapor and ice crystals periodically vent. According to the theory, Enceladus formed some 4.5 billion years ago by the mixing of ice and rock containing radioactive isotopes of aluminum and iron. Over a period of several million years, the rapid decay of the isotopes produced a burst of heat that resulted in a rocky core enclosed by an ice sheet. Over time, the remaining decomposition in the core further warmed and melted the moon's interior. If confirmed, the model suggests Enceladus possesses the necessary ingredients to support life - a stable heat source, organic materials and liquid water.

Related Content

[illustrative photo]
September 24, 2011
Diabetes may significantly increase risk of dementia

By UNIVERSITY OF MICHIGAN HEALTH SYSTEM