New Israeli technology replaces surgeon's knife with no-cut alternative

The technology developed at the Technion softens the collagen fibers by means of a controlled release system of collagenase, an enzyme that breaks down the collagen.

February 15, 2018 19:53
2 minute read.
New Israeli technology replaces surgeon's knife with no-cut alternative

Surgeon selecting sterilized tool for operation.. (photo credit: INGIMAGE)


Dear Reader,
As you can imagine, more people are reading The Jerusalem Post than ever before. Nevertheless, traditional business models are no longer sustainable and high-quality publications, like ours, are being forced to look for new ways to keep going. Unlike many other news organizations, we have not put up a paywall. We want to keep our journalism open and accessible and be able to keep providing you with news and analysis from the frontlines of Israel, the Middle East and the Jewish World.

As one of our loyal readers, we ask you to be our partner.

For $5 a month you will receive access to the following:

  • A user experience almost completely free of ads
  • Access to our Premium Section
  • Content from the award-winning Jerusalem Report and our monthly magazine to learn Hebrew - Ivrit
  • A brand new ePaper featuring the daily newspaper as it appears in print in Israel

Help us grow and continue telling Israel’s story to the world.

Thank you,

Ronit Hasin-Hochman, CEO, Jerusalem Post Group
Yaakov Katz, Editor-in-Chief


People who have to undergo surgery but fear the scalpel will have a less-frightening alternative, the enzymatic “blade.” Researchers at the Wolfson Faculty of Chemical Engineering at Haifa’s Technion-Israel Institute of Technology have developed a device that replaces the surgeon’s knife with natural biological materials.

In an article just published in ACS Nano of the American Chemical Society, the researchers present the application of this technology in a surgical procedure in the mouth. This application significantly reduces the pain associated with orthodontic surgery and significantly accelerates tissue restoration.

The research was conducted by Prof. Avi Schroeder, a nanotechnology expert who is head of the targeted drugs laboratory and personalized medicine technologies at the faculty. The “blade” is based on the intelligent use of enzymes – biological molecules by which the body restores itself – as well as nanoparticles and technology for controlled release of drugs.

Every year, about five million people in the US alone undergo orthodontic treatment; to speed up the treatment, which can take as long as two years, many of them undergo an invasive procedure in which the collagen fibers that connect the tooth to the bone tissue that holds it are cut for the laying of an orthodontic bridge.

The technology developed at the Technion softens the collagen fibers by means of a controlled release system of collagenase, an enzyme that breaks down the collagen. In methods developed in Schroeder’s lab, the collagenase is packed into liposomes – nanoscale particles with a spherical shape – that as long as they are there, cause the collagenase particles to be inactive. But when the gel is applied to the target site, the enzyme gradually begins to leak out of the liposome and soften the collagen fibers.

The main author of the article is Dr. Assaf Zinger, who conducted his research in the framework of his doctoral thesis under the guidance of Schroeder.

Zinger emphasizes that the new approach can be applied in a variety of other surgical procedures. “For thousands of years, the surgeon’s scalpel has become more sophisticated, but the paradigm has not changed,” he said. “In our study we present a significant paradigmatic change – the replacement of a mechanical-physical process with a biological process.”

The researchers conducted a series of experiments in which optimal collagenase concentration was determined for the procedure and subsequent tissue rehabilitation.

In a preclinical study, the researchers compared the efficacy of the controlled-release system (combined with a bridge) to that of conventional orthodontic therapy. The conclusion is that the unique system shortens the time needed to straighten teeth by about two-thirds. The study was conducted in rats, using a special bridge built for the experiment.

The innovative treatment using proteolytic nanoparticles led to displacement of the teeth three times faster than their speed of movement when treated only with a bridge treatment alone.

The research included physicians from Tel Aviv Sourasky Medical Center; physicians and dentists from Haifa’s Rambam Medical Center; and the Moriah Veterinary Center.

Join Jerusalem Post Premium Plus now for just $5 and upgrade your experience with an ads-free website and exclusive content. Click here>>

Related Content

A vial of measles, mumps and rubella vaccine and an information sheet.
May 16, 2019
Hundreds of haredim attend symposium with leaders of anti-vaccine movement